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Abstract. It is pointed out that a graph contributes to the high-temperature expansion of theM-
state Potts model if and only if it has a nowhere-zeroM-flow. This graph-theoretical property is
shown to be equivalent to the existence of a proper arrowing of the graph, which can be visualized
easily by means of arrows put on the edges in such a way that the sum of these arrows is 0 modM

at every vertex. By means of this concept it is rather easy to solve the problem for planar graphs
completely, one result being that all planar graphs contribute forM > 4. For nonplanar graphs, all
of them certainly contribute forM > 6, but it is an unproven conjecture thatM > 5 suffices. The
classes of graphs contributing for 26 M 6 6 are characterized.

1. Introduction

The partition function for theM-state Potts model on a lattice graphL can be written as

Z(L) =
∑
{iv }

v∈V (L)

∏
e∈E(L)

�(iv1(e), iv2(e)) (1.1)

whereV (L) is the set of vertices of the lattice,E(L) the set of its edges connecting interacting
spins, each vertex variable takes onM different values,iv ∈ {0, 1, . . . ,M−1}, and the vertices
at the ends of edgee ∈ E(L) are denoted byv1(e) andv2(e). The Boltzmann factor matrix
occurring for each pair of interacting spins is given by

�(i, j) =
{

1 for i = j
ω = exp(−E/kBT ) otherwise.

(1.2)

HereE is the mutual energy of two spins in different states; the energy for the case of equal
states has been set to 0. From this, a high-temperature expansion [1–3] can be derived by
rewriting the Boltzmann factors as

�(i, j) = [1 + (M − 1)ω][1 + q(i, j)]/M. (1.3)

The matrixq(i, j) measures the deviation from the infinite-temperature limit:

q(i, j) = ω̃Q(i, j) ω̃ = (1− ω)/[1 + (M − 1)ω]

Q(i, j) =
{
M − 1 for i = j
−1 otherwise.

(1.4)

It is clear that the dual Boltzmann factorω̃ is the small parameter for the expansion. Insertion
of equations (1.4) into the partition function of eqaution (1.1) gives an expansion in terms of
powers ofω̃; the coefficients in this power series are sums of productsα(G,M) for multiply
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connected subgraphs ofL. These subgraphs are defined by the edges carrying aq in the explicit
multiplication of the [1 +q(i, j)]-factors:

α(G,M) = M−|V (G)|
∑
{iv }

v∈V (G)

∏
e∈E(G)

Q(iv1(e), iv2(e)). (1.5)

Here the notation|A| is used for the cardinality of the setA. For more details concerning this
expansion and the corresponding one for the free energy, see, e.g., [1,3,4].

The question to be treated in this paper is: for which graphs and for what number of states
does equation (1.5) give a nonzero result? This is motivated by the well known fact [1,2] that
for the case of the Ising model (M = 2), only graphs with an even number of edges at each
vertex can give a contribution. Also, although equation (1.5) is only defined for subgraphs
of a lattice graph, it is easy to see that every possible multiply connected graph will make a
contribution:

• If the lattice graph is planar (i.e., the Potts model is considered in two dimensions), an
arbitrary planar graphGp can always be approximated:Gp can be embedded in the plane
so that there is a minimal distanced between any pair of nonconnected edges, i.e., edges
without a common vertex; taking the lattice constant much less thand, the graph can
be approximated by edges of the lattice graph without unwanted intersections. Since
equation (1.4) implies that

Q2 = MQ (1.6)

holds, equation (1.5) guarantees thatα(Gp,M) is identical to this function for the
approximating lattice subgraph.
• If the Potts model is considered to be defined on a three- or higher-dimensional lattice, the

situation is similar: sinceeverygraphG can be embedded into three-dimensional space [5]
so that all pairs of nonconnected edges have a minimal distanced again, a sufficiently
small lattice constant can give rise to a lattice subgraph with the sameα(G,M).

This paper is organized as follows. In section 2, a number of cases in whichα(G,M) factorizes
is studied to provide restrictions on the types of graphs which have to be taken into account.
In section 3 the connection of the present problem with the Tutte polynomial, nowhere-zero
M-flows and proper arrowing is discussed. Also, the concepts of Ising thickness (the minimal
number of even-valency (Ising) graphs covering a graph), and of arrow number (the minimal
value ofM, for which the graph contributes) are shown to be well defined. Section 4 is devoted
to a rather detailed description of the reduction of these problems to the corresponding ones
for cubic or trivalent graphs. With these preliminaries, the problem is solved for graphs with
Ising thickness 2 in section 5, which case includes the planar graphs. In section 6, finally, the
graphs occurring in the general (dimension>3) case are classified and a short discussion about
the practical determination of the arrow number is given.

2. Restrictions on the graphs

In this section, it will be shown, that equations (1.4) and (1.5) restrict the types of graphs that
have to be considered rather severely. First of all, the graphs can be taken such that they have
no loops (edges starting and ending at the same vertex), since such loops simply give an extra
factor (M − 1) by equation (1.4). This is a special case of a graph containing articulation
points (i.e. vertices, upon removal of which the graph becomes disconnected) and it is easy to
see that the transitivity of the Potts model groupS(M) leads to a factorization

G = G1 ∪G2 G1 ∩G2 = {v} ⇒ α(G,M) = α(G1,M)α(G2,M). (2.1)
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Also, the graphs contain no isthmuses, i.e., edges which upon cutting them disconnect the
graph, since equations (2.1) can then be used twice to give a product containing a factor
α(e,M), which is zero by the definition of equation (1.4), see also equation (3.4) below. In
graph theory, one says that a graph isk-edge connected if cuttingk edges (this is called a
k-cut) cannot disconnect it. Similarly, a graph isk-connected if the removal ofk vertices does
not disconnect it. From the above, the graphs that have to be taken into account are at least
2-edge-connected and 2-connected.

There are several more cases, in which the functionα(G,M) factorizes. The first of these
occurs ifG is exactly 2-edge-connected, i.e., if there are edgese1 ande2 so that cutting these
disconnects the graph. Let these disconnected pieces beG1, containing the endverticesa of
e1 andb of e2, andG2, containing the other end-vertices,c andd. Then one has

α(G,M) =
∑

ia ,ib,ic,id

A1(ia, ib)A2(ic, id)Q(ia, ic)Q(ic, id) (2.2)

where the matricesA1 andA2 are obtained by summing over all internal vertex variables ofG1

andG2, respectively. By the Potts symmetryS(M), these matrices necessarily have the form

A(i, j) =
{
B for all i = j
C for all i 6= j .

(2.3)

Now equation (2.2) is easily evaluated as a trace; comparing this with the values ofα(H1,M)

andα(H2,M), where theHs are obtained from theGs by connecting their vertex pairsa, b
andc, d by new edges, one sees that the product formula

α(G,M) = α(H1,M)α(H2,M)/(M − 1) (2.4)

holds. Similarly, letG be exactly 3-edge-connected, i.e. the cutting of the three edgese1, e2

ande3 disconnects the graph, so that there are disjoint subgraphsG1 andG2 with three external
vertices each. Summing over all internal vertex variables now gives three-variable functions
As(i, j, k), which, by the Potts symmetry again, must be of the form

A(i, j, k) =



B if i = j = k
C1 if i = j 6= k
C2 if i = k 6= j
C3 if j = k 6= i
D if all i, j, k are pairwise different.

(2.5)

Let for the present case the graphsKs be defined by taking a new vertex and connecting it by
three edges to the external vertices of theGs ; the structure of equation (2.5) is simpler for this
special case, since one has∑
α

Q(i, α)Q(j, α)Q(k, α)

=


M(M − 1)(M − 2) for i = j = k
−M(M − 2) for i = j 6= k i = k 6= j j = k 6= i
2M for i 6= j 6= k i 6= k.

(2.6)

A certain amount of algebra shows that the factorization

α(G,M) = α(K1,M)α(K2,M)/[(M − 1)(M − 2)] (2.7)

holds nonetheless forM > 2. This shows that it suffices to consider graphs which are at least
3-edge-connected, such that all 3-cuts are trivial, i.e. these disconnect, at most, a vertex of
valency 3.
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3. Nowhere-zero flows and proper arrowings

If G is any graph ande one of its edges, use of the defining relationQ(i, j) = Mδ(i, j) − 1
for this particular edge yields

α(G,M) = α(G/e,M)− α(G− e,M) (3.1)

whereG/e is derived fromG by contracting the edge (thus identifying its pair of end-vertices),
whereasG − e is obtained by deleting it (and using equation (1.6) twice). Now there is a
unique polynomial functionTG(x, y), the Tutte polynomial [6–8], defined on all graphs, with
the properties:

(i) TE(m)(x, y) = 1 for all edgeless graphsE(m) with m vertices and
(ii) for any other graph, it can be calculated recursively by the relations

TG(x, y) =


xTG−e(x, y) if e is an isthmus

yTG−e(x, y) if e is a loop

TG−e(x, y) + TG/e(x, y) otherwise.

(3.2)

It is clear that there must be a relation; actually, one has [6,7]

α(G,M) = (−1)|V (G)|TG(0, 1−M). (3.3)

It is not surprising that this universal graph function turns up here, since it is well known that
the partition function of the Potts model on a graph can also be expressed in terms of it [7,8].
The same is true for the partition function of the more general random cluster model [7–9].
These recursion relations are not very effective for calculating these quantities, however.

It is possible to use equation (3.3) to derive the relation with nowhere-zeroM-flows [6]. It
is, however, easier to remark that equation (1.4) implies that the eigenvalues and eigenvectors
of the matrixQ are known:

M−1∑
l=0

Q(k, l) = 0 for all k (3.4)

so that the vectore with all entries equal to 1 is an eigenvector with eigenvalue 0. Now ifb is
any vector orthogonal toe, which means that

∑
l b(l) = 0 holds, one has

M−1∑
l=0

Q(k, l)b(l) = (M − 1)b(k)−
∑
l 6=k

b(l) = Mb(k) (3.5)

so that every such vector is an eigenvector with eigenvalueM. Further results depend on a
choice of basis of this(M − 1)-dimensional space. Since the group of the Potts model is
the full symmetric groupS(M), any regular, Abelian subgroup of this will give such a basis
by means of its dual group of characters: see, e.g., [10, ch 7]. In particular, ifC(M) is the
cyclic group onM objects, these characters are theMth primitive roots of unity, which define
a normalized basis ofM-dimensional space by

bm(l) = M− 1
2 exp(2π iml/M) m = 0, 1, . . . ,M − 1. (3.6)

These are, form 6= 0, orthogonal toe, so thatQ(k, l) can be written as

Q(k, l) =
M−1∑
m=1

exp[2π im(k − l)/M]. (3.7)
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In order to insert this into equation (1.5), the edges ofG have first to be oriented, otherwise it
is not clear to which vertexk or l belong; if the edgee is interpreted as pointing fromv2 to v1,
one obtains

α(G,M) = M−|V (G)|
M−1∑
me=1
e∈E(G)

∏
v∈V (G)

M−1∑
jv=0

exp[2π ijvK(v)/M]

K(v) =
∑

e∈E+(v)

me −
∑

e∈E−(v)
me.

(3.8)

Here the setE+(v) consists of all edges incident onv and pointing towards it,E−(v) of all
edges pointing away from it. The sum overjv gives zero, unlessK(v) = 0 modM holds:

α(G,M) =
M−1∑
me=1
e∈E(G)

∏
v∈V (G)

δM [K(v)] δM(x) =
{

1 if x = 0 modM

0 otherwise.
(3.9)

Clearly,α(G,M) is equal to the number of ways to label the edges by indicesme taking values
from {1, 2, . . . ,M − 1}, so that, for a given orientation of these edges, allδM -restrictions
are obeyed. Note that this number does not depend upon this edge orientation: reversing
one arrow and replacingme byM − me does not change the value of anyK(v) and the new
variable has the same range as the original one. Such a labelling of the edges of a graph is
called anowhere-zeroM-flow. Its independence from the particular orientation chosen shows
that it is an intrinsic property of the underlying nondirected graph. As early as 1954, Tutte [6]
conjectured that every graph without an isthmus has a nowhere-zero 5-flow. This result has not
been proved yet. It is, however, known that every such graph has a nowhere-zero 6-flow [11],
a result that was preceded by a proof of the existence of nowhere-zero 8-flow [12].

It is often more convenient to work with anarrowing instead of a nowhere-zero flow. This
is defined for a specific configuration of edge variables and for a fixed edge orientation by:

• If the edge points from vertex 1 to vertex 2 and the edge variable ism < M/2, then put
m arrows on this edge pointing from 1 to 2.
• If the edge points from 1 to 2 and the edge variable ism > M/2, then putM −m arrows

on this edge pointing from 2 to 1.
• If the edge points from 2 to 1 andm < M/2, there arem arrows from 2 to 1.
• If the edge points from 2 to 1 andm > M/2, there areM −m arrows from 1 to 2.
• If m = M/2, put no arrows on this edge. Such edges, which can only exist for evenM,

will be called thick and drawn as such in figures.

Obviously, given an arrowing and the original edge orientation, the original edge variables
can be retrieved unambiguously. The connection between theδM functions occurring in
equation (3.9) and the restriction on the arrowing are easily found: letα+ be the total number
of arrows pointing towards a vertexv, α− the number pointing away from it andα0 the number
of adjacent thick edges. Then these numbers have to satisfy the relation

α+ − α− + α0(M/2) = 0 modM. (3.10)

An arrowing such that equation (3.10) is fulfilled at every vertex is called aproperM-arrowing
of the graphG. It is obviously the same as a particular nowhere-zeroM-flow. If a graph has
a nowhere-zeroM-flow such a proper arrowing exists and the graph is calledM-arrowable.
As a direct consequence of these definitions, one can formulate the following, in which no
explicit recourse to the groupC(M) is necessary:

(a) A graph is(M = 2k+1)-arrowable if it is possible to orient every edge withm 6 k arrows
so that the number of ingoing arrows at every vertex equals the number of outgoing ones.
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(b) A graph is(M = 2k)-arrowable if a set of thick edges exists so that the others can be
oriented withm < k arrows in such a way that equation (3.10) is satisfied at every vertex.

One can now interpret the numberα(G,M) defined by equation (1.5) as the number of proper
M-arrowings ofG or, equivalently, as the number of nowhere-zeroM-flows onG. A graph
G gives a contribution to the high-temperature series for theM-state Potts model if and only
if this graph isM-arrowable. This immediately implies the result for the Ising model cited
above: forM = 2, there are only thick edges, counting 1 each in equation (3.10), so that a
nonzero value forα(G, 2) can only be obtained if all vertices ofG have even valency. Since
this proper arrowing is unique, this nonzero value is actually equal to 1. A graph with vertices
of even valency only contains an Eulerian circuit, i.e. a closed path starting and ending at an
arbitrary vertex and traversing every edge of the graph exactly once, see, e.g., [13, p 159]. Now
if all edges are given exactly one arrow in the direction of this Eulerian circuit, the resulting
arrowing is proper for allM, since at every vertex of valency 2q, there will be exactlyq arrows
pointing towards this vertex and just as many pointing away from it. This is a special case of a
basic property of nowhere-zero flows [6,7] stating that a graph with a properM-arrowing also
has a proper(M + 1)-arrowing, so that one can define anarrow numberµ(G) for every graph
as the smallestM for which a proper arrowing exists. The result of Seymour [11] implies that
µ(G) 6 6 holds for every graph without an isthmus. For a graph with an isthmus, there are
no nowhere-zero flows and one setsµ(G) = ∞.

The above results have been derived by using as a basis the characters of the cyclic group
C(M) ⊆ S(M), which exists for allM. Equivalent results must be obtainable ifM is such
that other regular, Abelian subgroups ofS(M) exist. Such an Abelian groupA can always be
written as the direct product of a number of cyclic ones [14]:

A = C(s1)⊗ C(s2)⊗ · · · ⊗ C(sq) |A| = M = s1s2 . . . sq . (3.11)

If a pair of thesi have a common factor, this group is different fromC(M). The basis vectors
defined by such a group are simply direct products of the ones from equation (3.6):

bm1,m2,...,mq (l1, l2, . . . , lq) = M−
1
2

q∏
j=1

exp(2π imj lj /sj ). (3.12)

In this basis, the matrixQ(k, l) has the form

Q(k, l) =
s1−1∑′

m1=0

. . .

sq−1∑′

mq=0

q∏
j=1

exp[2π imj(kj − lj )/sj ] (3.13)

wherek = k1 + k2s1 + k3s1s2 + · · · andl is given by an analogous expression. The primes on
the sums indicate that(m1, m2, . . . , mq) 6= (0, 0, . . . ,0)must hold. Insertion of this form into
equation (1.5) gives the following results:

(i) If Gj denotes the subgraph ofG defined by the edges carrying a nonzero value ofmj , the
summation over thej th component of the vertex spin gives the same type of expressions
as for the simple case of equation (3.9), but withδsj -functions. Therefore, this subgraph
can be arrowed in the same way as before, but with numbers of arrows6(sj /2).

(ii) Since no edges can carry a zero for allj , the union of theseGj isG. It is important to
remark that these partial graphs do not have to be different pairwise; also, they are not
necessarily connected and can contain articulation points, but no isthmuses. This then
shows, that the relation

α(G, s1s2 . . . sq) =
∑
{Gj }

∪q
j=1Gj=G

q∏
j=1

α(Gj , sj ) (3.14)
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must hold. This equation implies that a graphG isM-arrowable forM = s1s2 . . . sq if and
only if it is the union ofq graphsGj , which aresj -arrowable. In particular, a graphG is 2q-
arrowable if and only if it is the union ofq graphs with even-valency vertices throughout.
The value ofα(G, 2q) is exactly the number of ways in which such a decomposition is
possible. Since these partial graphs do not have to be different, it follows immediately
that a graph which is 2q-arrowable is also 2q+a-arrowable for alla > 0, so that the next
definition makes sense: theIsing thicknesst (G) of a graphG is the minimal number of
even-valency graphs coveringG.
In view of Jaeger’s theorem [12], every graph without an isthmus has Ising thickness
t (G) 6 3. The relation between Ising thickness and the arrow number is easily seen to
be given by

t (G) = d2 logµ(G)e or 2t (G)−1 < µ(G) 6 2t (G). (3.15)

Therefore,t (G) = 1 is equivalent toµ(G) = 2 and the only graphs with this value of the
arrow number are the ones in which every vertex has even valency.

4. Reduction to trivalent graphs

In this section, it is shown that a graph which isM-arrowable,M > 2, has a (possibly not
unique) cubic or trivalent (i.e., with three edges at every vertex) counterpart with the same
property, from which it can be reproduced by inverse operations. The study of such trivalent
graphs is much easier than the general case as can already be seen from the fact, that a subgraph
with as only vertices such with even valency must simply be a system of disjoint circuits, which
form their own Eulerian circuit in this case. The first three operations are necessary to associate
to everyM-arrowable graph a simple, homeomorphically irreducible one, i.e. a graph without
multiple edges and without valency-2 vertices. These constructions are:

A As already remarked in the previous section, the square of the matrixQ is simplyMQ,
see equation (1.6), so that a graph isM-arrowable if and only if its homeomorphically
irreducible counterpart has this property. Actually, deletion or insertion of vertices of
valency 2 does not changeα(G,M).

B If G contains anr-fold multiple edge with numbersu1, . . . , ut of arrows from vertex 1 to
vertex 2 andut+1, . . . ur in the other direction, there are two possibilities. If the net sum
S of the arrows is6=0 modM, it can be replaced by a single edge carryingS modM > 0
arrows from 1 to 2 ifS < (M/2), byM−S arrows from 2 to 1 ifS > (M/2) or by a thick
edge ifS = (M/2). An example is shown in figure 1(a) for the caseM = 5. Conversely,
an edge carryingS arrows can always be replaced by anr-fold multiple one.

C On the other hand, if this sum isS = 0 modM, all these edges can be deleted without
changing theM-arrowability of the graph. This is shown in figure 1(b) (for casesM > 4).
In the second step in this figure, construction A has been used twice to obtain a graph
without vertices of valency 2. The converse operation simply puts a multiple edge with
arrow sum zero (i) between two existing vertices, or (ii) between an existing vertex and a
new vertex on an existing edge or (iii) between two such new vertices.

Once this simple graph without vertices of valency 2 is obtained, three further constructions
allow the transition to a trivalent graph:

D Let v be a vertex with valency larger than 3 in a graphG. If the sum of the arrow numbers
on three of the edges incident onv is already equal to 0 modM, then this is also the case
for the sum of the arrow numbers on remaining edges, so that a vertex with valency 3 can
be dissociated without damaging the arrowing, see figure 1(c) for an example valid for
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(c)

-� -�

(a)

-� -�

(b)

(d)

-� -� -�

(e) (f)

Figure 1. Examples for the constructions B–F to obtain anM-arrowable trivalent graph from an
arbitrary one with the same property. See text for descriptions of parts (a)–(f ).

allM > 4. The converse of this operation is simply the contraction of two nonconnected
vertices.

E It is also possible that two of the edges carry equal but opposite numbers of arrows or that
there is a pair of thick edges atv. In this case, a vertex of valency 2 can be dissociated,
which can subsequently be removed by the construction of A again. It is possible that this
operation results in a graph with multiple edges, so that constructions B or C must also
be applied to obtain a simple graph. An example, again valid for allM > 4, is shown in
figure 1(d). The converse of this construction is the insertion of a new vertex on an edge
followed by contraction of this vertex with an existing one.

F If, after performing all possible constructions of types D and E, the graph is still not
trivalent, an arbitrary pair of edges incident onv can be dissociated and connected to a
new vertex, which is in turn connected tov by a new edge. Since no construction of type E
was possible, the new edge necessarily carries a nonzero number of arrows. An example
of this construction is shown in figure 1(e) for the caseM = 4, whereas figure 1(f ) shows
this construction applied twice for an example withM = 5. As in case D, the converse
procedure is vertex contraction, but between two connected vertices.

Repeated application of the constructions A–F now obviously implies:

(a) For an arbitraryM-arrowable graphG with a given proper arrowing, the constructions
yield one or more trivalent, properly arrowed graphs.

(b) Given a properlyM-arrowed trivalent graph, a set ofM-arrowable graphs can be
constructed from this by the inverses of the operations A–F.

These graphs are multiply connected, but may contain vertices of valency 2 as well as multiple
edges.

In a properly arrowed trivalent graph, the possible vertex configurations fall into four
different classes, due to the fact that there are at most(M/2) arrows on all edges:
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-� -� -�M = 6

- - -M = 5

�

M = 3 -�
M = 4 or

01 10

11

-�

-

Figure 2. Sinks, sources, bifurcations and confluences for 36 M 6 6.

(1) A sinkhas all three edges pointing towards the vertex; the sum of the numbers of arrows
isM.

(2) A sourceis obtained from a sink by inverting all arrows.
(3) At a bifurcation, there is one edge pointing toward the vertex carryingu1 arrows, the

other two edges point away from the vertex and their arrow numbersu2 andu3 satisfy
u1 = u2 + u3.

(4) A confluenceis obtained from a bifurcation by reversing all arrows.

This classification is unique for odd values ofM; for evenM, the thick edges must be given
a fixed, but arbitrary orientation in order to to make it unique. Figure 2 shows the possible
configurations for 36 M 6 6. These are the only ones possible by Seymour’s theorem [11].

• ForM = 3 there are only sinks and sources, connected by the automorphismσ , which
inverts all elements of an Abelian group [14].
• ForM = 4, the 4-arrowing based onC(4) gives the two possible vertices shown, which

are again mapped onto each other byσ . The first of these can be interpreted as a sink
or as a confluence, the second as a bifurcation or as a source, depending on whether the
direction of the thick edge is chosen toward the vertex or away from it, respectively. The
‘arrowing’ based onS(2)⊗ S(2) leads to a single type of vertex, also shown in figure 2.
The automorphism group Aut[S(2)⊗ S(2)] ∼= S(3) [14,15] permutes the edge labels in
all possible ways.
• For M = 5, there is exactly one vertex of the types 1–4 above; these are permuted

cyclically by Aut[C(5)] ∼= C(4) [14,15].
• ForM = 6, there are a source–sink and a confluence–bifurcation pair connected byσ

again. There is also a pair of vertices with thick edges, which can be interpreted as a
sink-bifurcation or a confluence–source pair as in the caseM = 4.

Another reason to restrict oneself to trivalent graphs comes from a study of the critical
graphsT (M), which are minimal and notM-arrowable:

(a) T (M) is notM-arrowable.
(b) If G is such that either|V (G)| < |V [T (M)] holds or that|V (G)| = |V [T (M)]| and
|E(G)| < |E[T (M)]| both hold, thenG is M-arrowable. The graphsT (M) are all
trivalent forM > 2, since if they contain a vertex with valency larger than 3, two edges
may be dissociated from this vertex and soldered together as in construction E above.
The resulting graph has one edge less thanT (M), so that it isM-arrowable by part (b)
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T (2)

T (3)

T (4)

Figure 3. The critical graphsT (2), T (3) andT (4) together with one of their 3-, 4- and 5-arrowings.

of the above definition. (Strictly, this is only true if the resulting graph has no isthmus;
that the two edges can be chosen so that this is the case, follows from [16].) Then the
converse of construction E would reproduceT (M) as anM-arrowable graph again, which
is a contradiction. ForM = 2, the smallest graph that is not 2-arrowable can also be
defined as a trivalent (but nonsimple) one: it simply consists of two vertices connected by
three parallel edges, see figure 3 and the next section. It is clear from section 2 that the
T (M) are 3-edge-connected and have only trivial 3-cuts. It can be shown that all circuits
in T (M) have length at least 2M − 3.

5. Results for Ising thickness 2 and planar graphs

As shown in figure 2, the only possibilities for the vertices of a properly 3-arrowed trivalent
graph are sinks and sources. Since every edge must connect such a sink–source pair, this is
only possible if the graph isbipartite, i.e. such that its vertices can be coloured with only two
colours without neighbouring vertices having the same colour. Conversely, if a trivalent graph
is bipartite, it suffices to designate the vertices of one colour as sinks, the others as sources and
to put an arrow from every source to every sink:.A trivalent graph is properly 3-arrowable if
and only if it is bipartite.

The smallest trivalent graph, which is not bipartite, is the complete graphK(4) with four
vertices, so that this must be the (unique) critical graphT (3). It is shown in figure 3, where a
proper 4-arrowing is also indicated, so thatµ[T (3)] = 4 holds. Also shown in figure 3 is the
graphT (2) of the previous section, consisting of three parallel edges; this is bipartite, so that
µ[T (2)] = 3 follows. A proper 3-arrowing is also shown in figure 3.

Since a graph withµ(G) = 3 has Ising thicknesst (G) = 2 by equation (3.15), a trivalent
bipartite graph must consist of the union of two circuit systemsA andB, a system of disjoint
circuits being the only type of subgraph with vertices of even valency only. Now at a vertex of
G = A ∪ B, both circuit systems are necesarily present: one edge belongs toA only, one to
B only and the third one to both circuit systems. Replacing the single arrow on this last edge
by a double one in the opposite direction shows that the circuit systems are oriented so that
they have a common direction on the shared edges. On the other hand, given a pair of circuit
systems which make upG, such a common orientation on the shared edges generates a proper
3-arrowing upon the replacement of a double arrow by a single one in the opposite direction.
It is useful to describe this situation by a general definition, valid also for the case that there
are other circuit systems necessary to obtain the full graph: two systems of circuitsA andB
are calledcompatible, notation(A,B) if these circuits can be given an orientation which is the
same on all common edges. The same definition applies if the circle systems are, for a general
graph, replaced by Eulerian circuit systems.
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In the above the following has been proved.A trivalent graph with Ising thicknesst (G) = 2
has arrow numberµ(G) = 3 if and only if there is a pair of compatible ciruit systems with
unionG.

For the case of a general graph witht (G) = 2, the inverse constructions of A–F above
transform a circuit system into an Eulerian circuit with the same orientation, so that this implies
thata graph with Ising thicknesst (G) = 2 has arrow numberµ(G) = 3 if and only if it is
the union of two subgraphs with even-valency vertices throughout, which are such that their
Eulerian circuitsA andB can be oriented so, that they have a common direction on all shared
edges.

A trivalent graph that is not bipartite hasµ(G) > 3 necessarily. If it is 4-arrowable,
µ(G) = 4 follows. In a 4-arrowing based onC(4), the only two vertices are the ones shown
in figure 2: there is always a thick edge, counting 2, and there are two singly arrowed edged,
which either both point towards the vertex or away from it. Tracing a path through these singly
arrowed edges in such a fashion that their orientation alternates in the direction of the path
must finally give a closed circuit with even circumference. If this visits all vertices, this is a
Hamiltonian cycle (see, e.g., [13, p 103]). If not, a similar circuit can be traced out. Finally, one
ends up with a system of circuits of even circumference visiting all vertices and with the|V (G)|
thick edges as a nonconnected graph. A regular (i.e., with fixed valencyk at every vertex)
subgraph of a graph containing all vertices is called ak-factor of the graph (see, e.g., [7]), so
that the above decomposition is into a 2-factor and a 1-factor. Now such a decomposition is
always possible for a trivalent graph without isthmuses (see [13, pp 183–5]). However, the
2-factor found above is special in that all of its circuits have even circumference. It will be
called aneven2-factor in what follows. On the other hand, it is obvious that if a trivalent graph
has an even 2-factor, its edges can be oriented alternatingly; then taking the thick edges as the
remaining 1-factor, a proper 4-arrowing results:a trivalent graph hasµ(G) = 4 if and only if
it is not bipartite and has an even 2-factor.

The same result follows from use of the groupS(2) ⊗ S(2); in this case, all vertices
have edges labelled by (01), (10) and (11), as shown in figure 3. This can be interpreted
as the possibility of colouring the edges of the graph with three colours, so that no equally
coloured edges meet at a vertex. Now the edges of a fixed colour form a 1-factor, so that
4-arrowability now decomposes the graph into three 1-factors. However, the union of any two
such 1-factors is an even 2-factor necessarily, and the existence of such a 2-factor guarantees
the solubility of the edge colouring problem: simply colour the edges of the 2-factor with two
alternate colours and use the third one for the remaining 1-factor. This shows explicitly that
the arrowing problem does not depend on the group used, as, of course, should be the case. It
follows from the above that a 4-arrowable graph can also be written as the union of two even
2-factors, for instance of the 2-factor consisting of (01) and (11) and of the one consisting of
the (10) and (11) edges.

The above immediately gives the following result for planar graphs:a planar trivalent,
nonbipartite graphHp hasµ(Hp) = 4.

Indeed, by the four-colour theorem [18, 19], the faces of a planar graph can be coloured
with at most four colours, so that no two faces which have an edge in common have the same
colour. These four colours can be labelled by the elements ofS(2) ⊗ S(2); now label the
common edge between two faces by the sum (in the group). It is clear that the three faces
around a vertex of a trivalent graph all are coloured differently, so that the edges are always
labelled by (01), (10) and (11). This is a proper 4-arrowing, so thatµ(Hp) 6 4 follows. Since
Hp is not bipartite, the result follows.

This now completely solves the problem of the occurring planar graphs in a high-
temperature expansion of the Potts model on a two-dimensional lattice graph. The graphs



2042 H Moraal

Gp occurring in the above case are:

• Even-valency graphs occur for allM > 2.
• Graphs with Ising thickness 2, so that their two Eulerian circuit systems are compatible,

contribute for allM > 3.
• All other planar graphs contribute forM > 4.

This follows, since the operations A–F and their inverses can be applied so as to leave the
planarity invariant (as in figure 1).

Note that the four-colour theorem is really necessary for these proofs to work since
µ(Gp) = 4 for a planar graph implies that its faces need at most four colours for a proper
colouring. If a planar graph needing five colours existed, it could only contribute forM > 5.
It is, therefore, not remarkable that the critical graphT (4) is not planar. This smallest trivalent
graph not containing an even 2-factor has long been known in graph theory. It is the Petersen
graph [17] with ten vertices. This (again unique) critical graphT (4) is also shown in figure 3
together with a proper 5-arrowing, thus establishingµ[T (4)] = 5. Its Ising thickness is 3 by
equation (3.15).

6. Graphs with Ising thickness 3

As remarked above, the Petersen graph hasµ[T (4)] = 5, implying that its Ising thickness is
t [T (4)] = 3. Generally, such trivalent graphs need three circuit systemsA, B andC to cover
them. Recall that these circuit systems define a proper 8-arrowing since they define a triple
(a, b, c), a, b, c ∈ {0, 1}, (a, b, c) 6= (0, 0, 0), for each edgee, wherea = 1 if e ∈ A, b = 1
if e ∈ B, c = 1 if e ∈ C. Sincet (G) = 3 as such only implies 56 µ(G) 6 8, there must
be other conditions on the circle systems to differentiate between the possible values of the
arrow number. One possible notion restricting the arrow number, the compatibility of a pair
of circuit systems, has been defined in the previous section as the possibility to orient their
circuits so that they have a common orientation on all shared edges. This is indeed the essence
of Seymour’s proof [11]; it is shown thatall trivalent graphs without an isthmus must be a
union of two compatible circuit systems(A,B), which constitute a 3-arrowable subgraph, and
a third circuit systemC. Thenµ(G) 6 6 follows from equation (3.14).

The question as to whether this notion is also satisfactory in distinguishing the cases
µ(G) = 5 and is still open. The following results hold:

(a) The three circuit systemsA, B and C are not all mutually compatible. If this were the
case, then it suffices to put one arrow on these, so that there two parallel arrows on edges
common to two circuit systems and three on the edges belonging to all. This would imply
µ(G) 6 4, which is a contradiction fort (G) = 3.

(b) If (A,B) and(B, C) both hold, thenµ(G) = 5. Indeed, let the edges ofA andC be given
1 and 2 arrows, respectively;B is compatible with both, so that it can be oriented parallel
to A and antiparallel toC. Therefore, it can be given 3 arrows in such a way, that on
edges common toA andC there are 4 arrows, on edges common toB andC there is one
arrow and on edges common to all there are only 2 arrows. This implies that all edges
carry at most 4 arrows, so thatµ(G) = 5 sincet (G) = 3. Presumably, a proof of Tutte’s
conjecture [6] would show that all trivalent graphs witht (G) = 3 have circuit systems of
this type. For the Petersen graph, it can easily be shown to be the case.

Now we are in a position to characterize all graphs occurring in the high-temperature of
the Potts model in three or more dimensions:

• All graphs with even-valency vertices throughout (t (G) = 1) contribute for allM > 2.
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• Graphs witht (G) = 2 and compatible circuit systems (trivalent graphs are bipartite)
contribute for allM > 3.
• All other graphs witht (G) = 2 (trivalent ones contain an even 2-factor) are present for

all M > 4.
• For t (G) = 3, the graphs with(A,B) and (B, C) (a trivalent example is the Petersen

graph) contribute for allM > 5.
• All other graphs witht (G) = 3, which comprise all finite graphs not listed already,

contribute for allM > 6.

The set of graphs defined in the last item is empty if Tutte’s conjecture holds.
The above completely solves the problem stated in the introduction in a formal way. The

practical question of finding the arrow number for a given graph has not been touched upon in
this paper. A brute-force search through all possible arrowings to find a proper one is obviously
out of the question. For certain classes of graphs, an answer can sometimes be found by other
means. Two examples will be sketched here: the first one concerning a generalization ofT (3),
the second one ofT (4).

(i) By decomposing a graph into two edge-disjoint ones, the implication

G = G1 ∪G2 E(G1) ∩ E(G2) = ∅ ⇒ µ(G) 6 max[µ(G1), µ(G2)] (6.1)

is clear. The complete graphsK(2q) can, forq > 2, be decomposed into a trivalent,
bipartite graph and one with even valency, so thatµ[K(2q)] = 3 follows.

(ii) Generalized Petersen graphsP(m, k) [20] are graphs consisting of two circuits of
circumferencem, the vertices of which are connected so, that theith one of the first circuit
(i = 0, 1, . . . , m−1) is connected to the one with numberki on the second circuit (k and
m have no factors in common). The Petersen graph isP(5, 2) in this notation. Nearly all
these generalized graphs can be shown to haveµ(G) = 4 in contrast toP(5, 2) by treating
the values of a proper 4-arrowing on the connecting edges as a formal (regular) language
and showing that the circuits can ‘understand’ each other forM = 4. For a subclass of
these graphs, the result also follows from the known presence of a Hamiltonian cycle,
which forms an even factor [20].

It is interesting that for bothT (3) andT (4), their generalizations lead to graphs with
smaller arrow number. Possibly such methods can also be applied to other classes of graphs.
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[13] Berge C 1963Théorie des Graphes et ses Applications(Paris: Dunod)
[14] Huppert B 1963Endliche Gruppen I(Berlin: Springer)



2044 H Moraal

[15] Wielandt H 1964Finite Permutation Groups(New York: Academic)
[16] Fleischner H 1976Monat. Math.81267
[17] Petersen J 1891Acta Math.15193
[18] Appel K and Haken W 1977Illinois J. Math.21429

Appel K, Haken W and Koch J 1977Illinois J. Math.21491
[19] Robertson N, Sanders D, Seymour P D and Thomas R 1997J. Comb. TheoryB 702
[20] Bodendiek R and Fuhrmann H A 1998Graphen und Computer(Heidelberg: Spektrum)


